From 0be80a07e38f08dd40e20175d788a3bfad8e68ef Mon Sep 17 00:00:00 2001
From: Administrator <15274802129@163.com>
Date: Mon, 11 Aug 2025 11:41:24 +0800
Subject: [PATCH] feat(ai): 增加 AI 陪练报告数据解析功能 - 新增 Report、RadarData 和 Evaluation 类用于解析报告数据 - 在 AiService 接口中添加 extractReportData 方法 - 在 AiServiceImpl 中实现报告数据的提取和解析 - 更新 ApiMemberTalkVo,增加 report 字段用于存储解析后的报告数据 - 修改前端相关的回答格式和类型

---
 src/main/java/cc/mrbird/febs/ai/service/impl/AiServiceImpl.java |  159 ++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 122 insertions(+), 37 deletions(-)

diff --git a/src/main/java/cc/mrbird/febs/ai/service/impl/AiServiceImpl.java b/src/main/java/cc/mrbird/febs/ai/service/impl/AiServiceImpl.java
index 3ab9f2c..fca39c3 100644
--- a/src/main/java/cc/mrbird/febs/ai/service/impl/AiServiceImpl.java
+++ b/src/main/java/cc/mrbird/febs/ai/service/impl/AiServiceImpl.java
@@ -24,6 +24,7 @@
 import java.util.ArrayList;
 import java.util.List;
 import java.util.concurrent.TimeUnit;
+import java.util.function.Consumer;
 import java.util.regex.Matcher;
 import java.util.regex.Pattern;
 import java.util.stream.Collectors;
@@ -37,8 +38,25 @@
 public class AiServiceImpl implements AiService {
 
     private static final String CODE_SUCCESS = "200";
+    private static final String CODE_GOING_ON = "199";
     private static final String CODE_NOT_FOUND = "201";
     private static final String CODE_ERROR = "500";
+
+    private static final String SCHEMA_JSON = "{\n" +
+            "     \"radar_data\": {\n" +
+            "       \"problem_understanding\": \"object\",\n" +
+            "       \"fluency\": \"object\",\n" +
+            "       \"principle_adherence\": \"object\",\n" +
+            "       \"logicality\": \"object\",\n" +
+            "       \"knowledge_mastery\": \"object\"\n" +
+            "     },\n" +
+            "     \"evaluation\": {\n" +
+            "       \"highlight\": \"object\",\n" +
+            "       \"suggestion\": \"object\",\n" +
+            "       \"reference_answer\": \"object\",\n" +
+            "       \"key_knowledge\": \"object\"\n" +
+            "     }\n" +
+            "   }";
 
     private final AiProductRoleService aiProductRoleService;
     private final ObjectMapper objectMapper;
@@ -56,8 +74,13 @@
 
     @PostConstruct
     public void init() {
-        ConnectionPool connectionPool = new ConnectionPool(10, 30, TimeUnit.SECONDS);
+        // 增加连接池大小和存活时间
+        ConnectionPool connectionPool = new ConnectionPool(32, 60, TimeUnit.SECONDS);
         Dispatcher dispatcher = new Dispatcher();
+        // 增加并发请求数量
+        dispatcher.setMaxRequests(128);
+        dispatcher.setMaxRequestsPerHost(32);
+
         this.service = ArkService.builder()
                 .dispatcher(dispatcher)
                 .connectionPool(connectionPool)
@@ -100,7 +123,7 @@
         aiRequest.setLinkId(linkId);
         aiRequest.setContent(content);
 
-        return question(aiRequest);
+        return this.question(aiRequest);
     }
 
     @Override
@@ -119,25 +142,8 @@
         messages.add(systemMessage);
         messages.add(userMessage);
 
-        // 生成 JSON Schema
-        String schemaJson = "{\n" +
-                "     \"radar_data\": {\n" +
-                "       \"problem_understanding\": \"object\",\n" +
-                "       \"fluency\": \"object\",\n" +
-                "       \"principle_adherence\": \"object\",\n" +
-                "       \"logicality\": \"object\",\n" +
-                "       \"knowledge_mastery\": \"object\"\n" +
-                "     },\n" +
-                "     \"evaluation\": {\n" +
-                "       \"highlight\": \"object\",\n" +
-                "       \"suggestion\": \"object\",\n" +
-                "       \"reference_answer\": \"object\",\n" +
-                "       \"key_knowledge\": \"object\"\n" +
-                "     }\n" +
-                "   }";
         try {
-            JsonNode schemaNode = objectMapper.readTree(schemaJson);
-            // 配置响应格式
+            JsonNode schemaNode = objectMapper.readTree(SCHEMA_JSON);
             ChatCompletionRequest.ChatCompletionRequestResponseFormat responseFormat = new ChatCompletionRequest.ChatCompletionRequestResponseFormat(
                     "json_schema",
                     new ResponseFormatJSONSchemaJSONSchemaParam(
@@ -152,11 +158,12 @@
                     .messages(messages)
                     .stream(false)
                     .responseFormat(responseFormat)
-                    .temperature(1.0)
-                    .topP(0.7)
-                    .maxTokens(4096)
+                    .temperature(0.7) // 降低温度参数,提高确定性,可能提升速度
+                    .topP(0.9)        // 调整topP参数
+                    .maxTokens(2048)  // 减少最大token数
                     .frequencyPenalty(0.0)
                     .build();
+
             List<ChatCompletionChoice> choices = service.createChatCompletion(chatCompletionRequest).getChoices();
             String result = choices.stream()
                     .map(choice -> choice.getMessage().getContent())
@@ -170,10 +177,97 @@
             log.error("初始化AI服务失败,JSON格式化输出初始化失败", e);
             return buildErrorResponse(CODE_ERROR, "AI服务调用失败");
         } catch (Exception e) {
-            log.error("调用AI服务失败,modelId: {}, content: {}", linkId, content, e);
+            log.error("调用AI服务失败,modelId: {}", linkId, e);
             return buildErrorResponse(CODE_ERROR, "AI服务调用失败");
         }
     }
+
+    @Override
+    public void streamQuestion(AiRequest aiRequest, Consumer<AiResponse> callback) {
+
+        String promptTemplate = aiRequest.getPromptTemplate();
+        String linkId = aiRequest.getLinkId();
+        String content = aiRequest.getContent();
+        if (!StringUtils.hasText(promptTemplate) || !StringUtils.hasText(linkId) || !StringUtils.hasText(content)) {
+            log.warn("请求参数不完整,promptTemplate: {}, linkId: {}, content: {}", promptTemplate, linkId, content);
+        }
+
+        final List<ChatMessage> messages = new ArrayList<>();
+        final ChatMessage systemMessage = ChatMessage.builder().role(ChatMessageRole.SYSTEM).content(promptTemplate).build();
+        final ChatMessage userMessage = ChatMessage.builder().role(ChatMessageRole.USER).content(content).build();
+        messages.add(systemMessage);
+        messages.add(userMessage);
+
+        try {
+            JsonNode schemaNode = objectMapper.readTree(SCHEMA_JSON);
+            ChatCompletionRequest.ChatCompletionRequestResponseFormat responseFormat = new ChatCompletionRequest.ChatCompletionRequestResponseFormat(
+                    "json_schema",
+                    new ResponseFormatJSONSchemaJSONSchemaParam(
+                            "ai_response",
+                            "json数据响应",
+                            schemaNode,
+                            true
+                    )
+            );
+            ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
+                    .model(linkId)
+                    .messages(messages)
+                    .stream(true) // 启用流式响应
+                    .responseFormat(responseFormat)
+                    .temperature(0.7)
+                    .topP(0.9)
+                    .maxTokens(2048)
+                    .build();
+
+            service.streamChatCompletion(chatCompletionRequest)
+                    .doOnError(Throwable::printStackTrace) // 处理错误
+                    .blockingForEach(response -> {
+                        AiResponse partialResponse = new AiResponse();
+                        if (response.getChoices() != null && !response.getChoices().isEmpty()) {
+                            String responseStr = String.valueOf(response.getChoices().get(0).getMessage().getContent());
+                            if (responseStr != null) {
+                                // 构造部分响应并回调
+                                partialResponse = buildGOINGONResponse(responseStr);
+                            }
+                        }else{
+                            partialResponse = buildPartialResponse("成功");
+                        }
+                        callback.accept(partialResponse);
+                    });
+//            service.streamChatCompletion(chatCompletionRequest)
+//                    .doOnError(throwable -> {
+//                        log.error("流式调用AI服务失败", throwable);
+//                        callback.accept(buildErrorResponse(CODE_ERROR, "AI服务调用失败"));
+//                    })
+//                    .subscribe(chatCompletionChunk -> {
+//                        // 处理每个数据块
+//                        Object chunkContent = chatCompletionChunk.getChoices().get(0).getMessage().getContent();
+//                        // 构造部分响应并回调
+//                        AiResponse partialResponse = buildGOINGONResponse(chunkContent);
+//                        callback.accept(partialResponse);
+//                    });
+        } catch (Exception e) {
+            log.error("调用AI服务失败", e);
+            callback.accept(buildErrorResponse(CODE_ERROR, "AI服务调用失败"));
+        }
+    }
+
+    private AiResponse buildGOINGONResponse(Object chunkContent) {
+        AiResponse response = new AiResponse();
+        response.setCode(CODE_GOING_ON);
+        response.setDescription("成功");
+        response.setResContext(chunkContent.toString());
+        return response;
+    }
+
+    private AiResponse buildPartialResponse(Object chunkContent) {
+        AiResponse response = new AiResponse();
+        response.setCode(CODE_SUCCESS);
+        response.setDescription("成功");
+        response.setResContext(chunkContent.toString());
+        return response;
+    }
+
 
     private static final Pattern JSON_PATTERN = Pattern.compile(
             "<\\|FunctionCallBegin\\|>(.*?)<\\|FunctionCallEnd\\|>",
@@ -182,22 +276,19 @@
 
     @Override
     public Report extractReportData(String modelOutput) {
-        // 提取JSON部分
         Matcher matcher = JSON_PATTERN.matcher(modelOutput);
         if (!matcher.find()) {
-            log.warn("未匹配到FunctionCall内容,原始输出: {}", modelOutput);
+            log.warn("未匹配到FunctionCall内容,原始输出长度: {}", modelOutput.length());
             return null;
         }
 
         String jsonContent = matcher.group(1);
-        log.debug("提取到的JSON内容: {}", jsonContent);
+        log.debug("提取到的JSON内容长度: {}", jsonContent.length());
 
-        // 解析JSON到Report对象
         try {
             return objectMapper.readValue(jsonContent, Report.class);
         } catch (JsonProcessingException e) {
-            log.error("JSON解析失败,原始内容: {}", jsonContent, e);
-            // 尝试修复截断的JSON(可选)
+            log.error("JSON解析失败,原始内容长度: {}", jsonContent.length(), e);
             Report repairedReport = tryRepairTruncatedJson(jsonContent);
             if (repairedReport != null) {
                 log.info("成功修复截断的JSON");
@@ -207,13 +298,7 @@
         }
     }
 
-    /**
-     * 尝试修复截断的JSON字符串
-     * @param truncatedJson 可能被截断的JSON字符串
-     * @return 修复后的Report对象,如果无法修复则返回null
-     */
     private Report tryRepairTruncatedJson(String truncatedJson) {
-        // 简单的修复策略:尝试添加缺失的结束括号
         String[] repairAttempts = {
                 truncatedJson + "\"}}}",
                 truncatedJson + "}}}",
@@ -229,7 +314,7 @@
             }
         }
 
-        log.warn("无法修复截断的JSON: {}", truncatedJson);
+        log.warn("无法修复截断的JSON,原始内容长度: {}", truncatedJson.length());
         return null;
     }
 

--
Gitblit v1.9.1