From 574bc2e8dba9d1d11be124f2054ba2243fca125c Mon Sep 17 00:00:00 2001 From: Administrator <15274802129@163.com> Date: Wed, 03 Sep 2025 13:43:21 +0800 Subject: [PATCH] feat(ai): 优化 prompt 构建逻辑并添加思考内容输出- 在 AliLlmStrategyServiceImpl 中添加了对思考内容的输出- 在 ApiMemberTalkStreamServiceImpl 中优化了 prompt 的构建逻辑 - 在 TestController 中调整了测试用例,使用枚举生成 prompt- 在 TestController 中添加了对思考内容的输出 --- src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java | 99 ++++++++++++++++++++++++++++++++++--------------- 1 files changed, 68 insertions(+), 31 deletions(-) diff --git a/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java b/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java index eb14b9e..4cb18dd 100644 --- a/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java +++ b/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java @@ -1,29 +1,24 @@ package cc.mrbird.febs.ai.strategy.Impl; -import cc.mrbird.febs.ai.entity.AiTalkItem; -import cc.mrbird.febs.ai.res.ai.Report; -import cc.mrbird.febs.ai.res.memberTalk.ApiMemberTalkStreamVo; import cc.mrbird.febs.ai.strategy.LlmStrategyService; +import cc.mrbird.febs.ai.strategy.enumerates.LlmStrategyContextEnum; import cc.mrbird.febs.ai.strategy.param.LlmStrategyDto; import cc.mrbird.febs.common.entity.FebsResponse; import cc.mrbird.febs.common.exception.FebsException; import cn.hutool.core.collection.CollUtil; +import cn.hutool.core.util.ObjectUtil; import cn.hutool.core.util.StrUtil; -import com.alibaba.dashscope.common.Message; -import com.alibaba.dashscope.common.Role; -import com.fasterxml.jackson.core.JsonProcessingException; -import com.fasterxml.jackson.databind.JsonNode; import com.volcengine.ark.runtime.model.completion.chat.*; import com.volcengine.ark.runtime.service.ArkService; import okhttp3.ConnectionPool; import okhttp3.Dispatcher; import org.springframework.stereotype.Component; -import org.springframework.util.StringUtils; import reactor.core.publisher.Flux; import javax.annotation.PostConstruct; import javax.annotation.PreDestroy; import java.util.ArrayList; +import java.util.HashMap; import java.util.List; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; @@ -33,7 +28,14 @@ private ArkService service; + private static final String ak = "AKLTZTQxZjMyZTUxMWJmNDEyNDkzNWExOGQ3ODllNzhhNmQ"; + private static final String sk = "TmpFeE1qZ3haREExTW1JeE5HRTBZVGc1WlRRNVlqWXpORGd5TWpsak5HWQ=="; + private static final String baseUrl = "https://ark.cn-beijing.volces.com/api/v3"; private static final String LinkId = "ep-20250805124033-lhxbf"; + private static final Double temperature = 0.7; + private static final Double topP = 0.9; + private static final Integer maxTokens = 2048; + private static final Double frequencyPenalty = 0.0; @PostConstruct public void init() { @@ -47,9 +49,9 @@ this.service = ArkService.builder() .dispatcher(dispatcher) .connectionPool(connectionPool) - .baseUrl("https://ark.cn-beijing.volces.com/api/v3") - .ak("AKLTZTQxZjMyZTUxMWJmNDEyNDkzNWExOGQ3ODllNzhhNmQ") - .sk("TmpFeE1qZ3haREExTW1JeE5HRTBZVGc1WlRRNVlqWXpORGd5TWpsak5HWQ==") + .baseUrl(baseUrl) + .ak(ak) + .sk(sk) .build(); } @@ -96,10 +98,10 @@ .model(LinkId) .messages(messages) .stream(false) - .temperature(0.7) // 降低温度参数,提高确定性,可能提升速度 - .topP(0.9) // 调整topP参数 - .maxTokens(2048) // 减少最大token数 - .frequencyPenalty(0.0) + .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度 + .topP(topP) // 调整topP参数 + .maxTokens(maxTokens) // 减少最大token数 + .frequencyPenalty(frequencyPenalty) .build(); List<ChatCompletionChoice> choices = service.createChatCompletion(chatCompletionRequest).getChoices(); @@ -115,7 +117,7 @@ } @Override - public Flux<FebsResponse> llmInvokeStreaming(List<LlmStrategyDto> dto) { + public Flux<FebsResponse> llmInvokeStreamingWithThink(List<LlmStrategyDto> dto) { if (CollUtil.isEmpty(dto)){ throw new FebsException("火山大模型初始化异常"); } @@ -126,10 +128,10 @@ .messages(messages) .stream(true) .thinking(new ChatCompletionRequest.ChatCompletionRequestThinking("enabled")) - .temperature(0.7) - .topP(0.9) - .maxTokens(2048) - .frequencyPenalty(0.0) + .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度 + .topP(topP) // 调整topP参数 + .maxTokens(maxTokens) // 减少最大token数 + .frequencyPenalty(frequencyPenalty) .build(); return Flux.from(service.streamChatCompletion(chatCompletionRequest)) @@ -144,21 +146,56 @@ } ChatMessage message = choice.getMessage(); - ApiMemberTalkStreamVo apiMemberTalkStreamVo = new ApiMemberTalkStreamVo(); - // 处理 reasoning content - String reasoningContent = message.getReasoningContent(); - if (StrUtil.isNotEmpty(reasoningContent)) { - apiMemberTalkStreamVo.setReasoningContent(reasoningContent); + + HashMap<String, String> stringStringHashMap = new HashMap<>(); + if (ObjectUtil.isNotEmpty(message.getReasoningContent())) { + stringStringHashMap.put(LlmStrategyContextEnum.THINK.name(),message.getReasoningContent().toString()); + } + if (ObjectUtil.isNotEmpty(message.getContent())) { + stringStringHashMap.put(LlmStrategyContextEnum.CONTENT.name(),message.getContent().toString()); + } + return new FebsResponse().success().data(stringStringHashMap); + }) + .onErrorResume(throwable -> { + throw new FebsException(StrUtil.format("火山大模型流式调用AI服务失:{}",throwable)); + }); + } + + @Override + public Flux<FebsResponse> llmInvokeStreamingNoThink(List<LlmStrategyDto> dto) { + if (CollUtil.isEmpty(dto)){ + throw new FebsException("火山大模型初始化异常"); + } + List<ChatMessage> messages = getMessages(dto); + + ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder() + .model(LinkId) + .messages(messages) + .stream(true) + .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度 + .topP(topP) // 调整topP参数 + .maxTokens(maxTokens) // 减少最大token数 + .frequencyPenalty(frequencyPenalty) + .build(); + + return Flux.from(service.streamChatCompletion(chatCompletionRequest)) + .map(response -> { + if (response == null || response.getChoices() == null || response.getChoices().isEmpty()) { + return new FebsResponse().success().data("未响应,请重试"); } - // 安全处理 content - String content = ""; - if (message.getContent() != null) { - content = message.getContent().toString(); + ChatCompletionChoice choice = response.getChoices().get(0); + if (choice == null || choice.getMessage() == null) { + return new FebsResponse().success().data("END"); } - apiMemberTalkStreamVo.setContent(content); - return new FebsResponse().success().data(apiMemberTalkStreamVo); + ChatMessage message = choice.getMessage(); + + HashMap<String, String> stringStringHashMap = new HashMap<>(); + if (ObjectUtil.isNotEmpty(message.getContent())) { + stringStringHashMap.put(LlmStrategyContextEnum.CONTENT.name(),message.getContent().toString()); + } + return new FebsResponse().success().data(stringStringHashMap); }) .onErrorResume(throwable -> { throw new FebsException(StrUtil.format("火山大模型流式调用AI服务失:{}",throwable)); -- Gitblit v1.9.1