From 841f1631b790d2c4caf24a40eb4830f57a9bafa5 Mon Sep 17 00:00:00 2001
From: Administrator <15274802129@163.com>
Date: Wed, 17 Sep 2025 17:21:07 +0800
Subject: [PATCH] feat(ai): 添加知识点推荐功能- 新增 AiProductPointService接口的 recommend 方法 - 实现 AiProductPointServiceImpl 中的 recommend 方法逻辑 - 添加 ApiProductPointController 中的 recommend 接口 - 创建 ApiProductPointRecommendDto 和 ApiProductPointRecommendVo 类

---
 src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java |  192 +++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 188 insertions(+), 4 deletions(-)

diff --git a/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java b/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java
index 08f7e55..4cb18dd 100644
--- a/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java
+++ b/src/main/java/cc/mrbird/febs/ai/strategy/Impl/HsLlmStrategyServiceImpl.java
@@ -1,20 +1,204 @@
 package cc.mrbird.febs.ai.strategy.Impl;
 
 import cc.mrbird.febs.ai.strategy.LlmStrategyService;
+import cc.mrbird.febs.ai.strategy.enumerates.LlmStrategyContextEnum;
 import cc.mrbird.febs.ai.strategy.param.LlmStrategyDto;
 import cc.mrbird.febs.common.entity.FebsResponse;
+import cc.mrbird.febs.common.exception.FebsException;
+import cn.hutool.core.collection.CollUtil;
+import cn.hutool.core.util.ObjectUtil;
+import cn.hutool.core.util.StrUtil;
+import com.volcengine.ark.runtime.model.completion.chat.*;
+import com.volcengine.ark.runtime.service.ArkService;
+import okhttp3.ConnectionPool;
+import okhttp3.Dispatcher;
 import org.springframework.stereotype.Component;
 import reactor.core.publisher.Flux;
 
+import javax.annotation.PostConstruct;
+import javax.annotation.PreDestroy;
+import java.util.ArrayList;
+import java.util.HashMap;
+import java.util.List;
+import java.util.concurrent.TimeUnit;
+import java.util.stream.Collectors;
+
 @Component("HsLlmStrategyService")
 public class HsLlmStrategyServiceImpl implements LlmStrategyService {
+
+    private ArkService service;
+
+    private static final String ak = "AKLTZTQxZjMyZTUxMWJmNDEyNDkzNWExOGQ3ODllNzhhNmQ";
+    private static final String sk = "TmpFeE1qZ3haREExTW1JeE5HRTBZVGc1WlRRNVlqWXpORGd5TWpsak5HWQ==";
+    private static final String baseUrl = "https://ark.cn-beijing.volces.com/api/v3";
+    private static final String LinkId = "ep-20250805124033-lhxbf";
+    private static final Double temperature = 0.7;
+    private static final Double topP = 0.9;
+    private static final Integer maxTokens = 2048;
+    private static final Double frequencyPenalty = 0.0;
+
+    @PostConstruct
+    public void init() {
+        // 增加连接池大小和存活时间
+        ConnectionPool connectionPool = new ConnectionPool(32, 60, TimeUnit.SECONDS);
+        Dispatcher dispatcher = new Dispatcher();
+        // 增加并发请求数量
+        dispatcher.setMaxRequests(128);
+        dispatcher.setMaxRequestsPerHost(32);
+
+        this.service = ArkService.builder()
+                .dispatcher(dispatcher)
+                .connectionPool(connectionPool)
+                .baseUrl(baseUrl)
+                .ak(ak)
+                .sk(sk)
+                .build();
+    }
+
+    @PreDestroy
+    public void destroy() {
+        if (service != null) {
+            service.shutdownExecutor();
+        }
+    }
+
+    private List<ChatMessage> getMessages(List<LlmStrategyDto> dto) {
+        List<ChatMessage> messages = new ArrayList<>();
+        for (LlmStrategyDto dtoItem : dto){
+            if (StrUtil.equals(dtoItem.getRole(), ChatMessageRole.SYSTEM.value())){
+                messages.add(ChatMessage.builder()
+                        .role(ChatMessageRole.SYSTEM)
+                        .content(dtoItem.getContent())
+                        .build());
+            }
+            if (StrUtil.equals(dtoItem.getRole(), ChatMessageRole.USER.value())){
+                messages.add(ChatMessage.builder()
+                        .role(ChatMessageRole.USER)
+                        .content(dtoItem.getContent())
+                        .build());
+            }
+            if (StrUtil.equals(dtoItem.getRole(), ChatMessageRole.ASSISTANT.value())){
+                messages.add(ChatMessage.builder()
+                        .role(ChatMessageRole.ASSISTANT)
+                        .content(dtoItem.getContent())
+                        .build());
+            }
+        }
+        return messages;
+    }
     @Override
-    public FebsResponse llmInvokeNonStreaming(LlmStrategyDto dto) {
-        return null;
+    public FebsResponse llmInvokeNonStreaming(List<LlmStrategyDto> dto) {
+        if (CollUtil.isEmpty(dto)){
+            throw new FebsException("火山大模型初始化异常");
+        }
+        List<ChatMessage> messages = getMessages(dto);
+        String result = "";
+        try {
+            ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
+                    .model(LinkId)
+                    .messages(messages)
+                    .stream(false)
+                    .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度
+                    .topP(topP)        // 调整topP参数
+                    .maxTokens(maxTokens)  // 减少最大token数
+                    .frequencyPenalty(frequencyPenalty)
+                    .build();
+
+            List<ChatCompletionChoice> choices = service.createChatCompletion(chatCompletionRequest).getChoices();
+            result = choices.stream()
+                    .map(choice -> choice.getMessage().getContent())
+                    .filter(contentObj -> contentObj != null)
+                    .map(Object::toString)
+                    .collect(Collectors.joining());
+        } catch (Exception e) {
+            throw new FebsException(StrUtil.format("火山大模型调用异常:{}", e.getMessage()));
+        }
+        return new FebsResponse().success().data(result);
     }
 
     @Override
-    public Flux<FebsResponse> llmInvokeStreaming(LlmStrategyDto dto) {
-        return null;
+    public Flux<FebsResponse> llmInvokeStreamingWithThink(List<LlmStrategyDto> dto) {
+        if (CollUtil.isEmpty(dto)){
+            throw new FebsException("火山大模型初始化异常");
+        }
+        List<ChatMessage> messages = getMessages(dto);
+
+        ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
+                .model(LinkId)
+                .messages(messages)
+                .stream(true)
+                .thinking(new ChatCompletionRequest.ChatCompletionRequestThinking("enabled"))
+                .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度
+                .topP(topP)        // 调整topP参数
+                .maxTokens(maxTokens)  // 减少最大token数
+                .frequencyPenalty(frequencyPenalty)
+                .build();
+
+        return Flux.from(service.streamChatCompletion(chatCompletionRequest))
+                .map(response -> {
+                    if (response == null || response.getChoices() == null || response.getChoices().isEmpty()) {
+                        return new FebsResponse().success().data("未响应,请重试");
+                    }
+
+                    ChatCompletionChoice choice = response.getChoices().get(0);
+                    if (choice == null || choice.getMessage() == null) {
+                        return new FebsResponse().success().data("END");
+                    }
+
+                    ChatMessage message = choice.getMessage();
+
+
+                    HashMap<String, String> stringStringHashMap = new HashMap<>();
+                    if (ObjectUtil.isNotEmpty(message.getReasoningContent())) {
+                        stringStringHashMap.put(LlmStrategyContextEnum.THINK.name(),message.getReasoningContent().toString());
+                    }
+                    if (ObjectUtil.isNotEmpty(message.getContent())) {
+                        stringStringHashMap.put(LlmStrategyContextEnum.CONTENT.name(),message.getContent().toString());
+                    }
+                    return new FebsResponse().success().data(stringStringHashMap);
+                })
+                .onErrorResume(throwable -> {
+                    throw new FebsException(StrUtil.format("火山大模型流式调用AI服务失:{}",throwable));
+                });
+    }
+
+    @Override
+    public Flux<FebsResponse> llmInvokeStreamingNoThink(List<LlmStrategyDto> dto) {
+        if (CollUtil.isEmpty(dto)){
+            throw new FebsException("火山大模型初始化异常");
+        }
+        List<ChatMessage> messages = getMessages(dto);
+
+        ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
+                .model(LinkId)
+                .messages(messages)
+                .stream(true)
+                .temperature(temperature) // 降低温度参数,提高确定性,可能提升速度
+                .topP(topP)        // 调整topP参数
+                .maxTokens(maxTokens)  // 减少最大token数
+                .frequencyPenalty(frequencyPenalty)
+                .build();
+
+        return Flux.from(service.streamChatCompletion(chatCompletionRequest))
+                .map(response -> {
+                    if (response == null || response.getChoices() == null || response.getChoices().isEmpty()) {
+                        return new FebsResponse().success().data("未响应,请重试");
+                    }
+
+                    ChatCompletionChoice choice = response.getChoices().get(0);
+                    if (choice == null || choice.getMessage() == null) {
+                        return new FebsResponse().success().data("END");
+                    }
+                    ChatMessage message = choice.getMessage();
+
+                    HashMap<String, String> stringStringHashMap = new HashMap<>();
+                    if (ObjectUtil.isNotEmpty(message.getContent())) {
+                        stringStringHashMap.put(LlmStrategyContextEnum.CONTENT.name(),message.getContent().toString());
+                    }
+                    return new FebsResponse().success().data(stringStringHashMap);
+                })
+                .onErrorResume(throwable -> {
+                    throw new FebsException(StrUtil.format("火山大模型流式调用AI服务失:{}",throwable));
+                });
     }
 }

--
Gitblit v1.9.1