From c76cbbefa26910c82dfd3585f8f999ee5784254b Mon Sep 17 00:00:00 2001
From: KKSU <15274802129@163.com>
Date: Wed, 28 Aug 2024 10:16:48 +0800
Subject: [PATCH] 新增功能操作按钮,和更新了数据库数据

---
 src/main/java/cc/mrbird/febs/mall/test/FingerPrint.java |  634 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 317 insertions(+), 317 deletions(-)

diff --git a/src/main/java/cc/mrbird/febs/mall/test/FingerPrint.java b/src/main/java/cc/mrbird/febs/mall/test/FingerPrint.java
index 788a348..a73b2f8 100644
--- a/src/main/java/cc/mrbird/febs/mall/test/FingerPrint.java
+++ b/src/main/java/cc/mrbird/febs/mall/test/FingerPrint.java
@@ -1,317 +1,317 @@
-package cc.mrbird.febs.mall.test;
-
-import javax.imageio.ImageIO;
-import java.awt.*;
-import java.awt.color.ColorSpace;
-import java.awt.image.BufferedImage;
-import java.awt.image.ColorConvertOp;
-import java.io.File;
-import java.io.IOException;
-import java.util.Arrays;
-
-/**
- * 图片是采用phash算法,一共分为四步吧.
- *
- * 1.将图片缩放到16*16大小,这是我们选择的合适的大小,假如宽高不一样,直接将其压到16*16,去掉细节,只保留宏观;
- *
- * 2.图片一共是16*16的,共256个像素,我们将图片进行灰度化,灰度化就是只有黑白灰三种,从白到黑,一共分了255层;
- *
- * 3.灰度化之后将图片进行DCT转换(离散余弦变化),因为为了识别有的图片旋转,这个DCT转换是将图片进行了一种压缩算法;
- *
- * 4.我们对这个算法进行了优化,因为之前是计算像素的均值,我们为了更准确,我们取RGB,rgb一共分为255个像素,我们将255个像素分为16段,如果像素大于0-16记为0,17到32记为1,直到255,这样就得到255位的二进制,这就是这张图片的指纹码.
- *
- * 得到唯一标识的指纹码之后怎么去计算像素度呢?
- *
- * 通过汉明距离比较两个二进制距离,如果距离小于<10的话,我们就判定两张图片相似.如果两个指纹码(二进制)一模一样,我们就判定两个是一张图片,或者类似;
- */
-/**
- * 视频相似度算法:
- * 视频的话我们是通过ffmpeg(ff am pig),它是一个专门处理视频的框架,可以从视频中按针提取图片.然后就按照图片的相似度取对比了...
- */
-
-/**
- * https://blog.csdn.net/weixin_34095889/article/details/91923072?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171652008316800182787012%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=171652008316800182787012&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-4-91923072-null-null.142^v100^pc_search_result_base8&utm_term=java%20%E6%8A%8A%E5%9B%BE%E7%89%87%E8%BD%AC%E6%8D%A2%E6%88%90%E9%BB%91%E7%99%BD%E7%81%B0%E5%83%8F%E7%B4%A0%E9%A3%8E%E6%A0%BC&spm=1018.2226.3001.4187
- * 均值哈希实现图像指纹比较
- */
-public class FingerPrint {
-
-    public static void main(String[] args) {
-        FingerPrint fp1 = null;
-        FingerPrint fp2 = null;
-        try {
-            fp1 = new FingerPrint(ImageIO.read(new File("D:\\image\\F1.png")));
-            fp2 = new FingerPrint(ImageIO.read(new File("D:\\image\\Z1.jpg")));
-        } catch (IOException e) {
-            e.printStackTrace();
-        }
-        System.out.println(fp1.toString(false));
-        System.out.println(fp2.toString(false));
-        System.out.printf("sim=%f",fp1.compare(fp2));
-    }
-
-    /**
-     * 图像指纹的尺寸,将图像resize到指定的尺寸,来计算哈希数组
-     */
-    private static final int HASH_SIZE=16;
-    /**
-     * 保存图像指纹的二值化矩阵
-     */
-    private final byte[] binaryzationMatrix;
-    public FingerPrint(byte[] hashValue) {
-        if(hashValue.length!=HASH_SIZE*HASH_SIZE)
-            throw new IllegalArgumentException(String.format("length of hashValue must be %d",HASH_SIZE*HASH_SIZE ));
-        this.binaryzationMatrix=hashValue;
-    }
-    public FingerPrint(String hashValue) {
-        this(toBytes(hashValue));
-    }
-    public FingerPrint (BufferedImage src){
-        this(hashValue(src));
-    }
-    private static byte[] hashValue(BufferedImage src){
-        BufferedImage hashImage = resize(src,HASH_SIZE,HASH_SIZE);
-        byte[] matrixGray = (byte[]) toGray(hashImage).getData().getDataElements(0, 0, HASH_SIZE, HASH_SIZE, null);
-        return  binaryzation(matrixGray);
-    }
-    /**
-     * 从压缩格式指纹创建{@link FingerPrint}对象
-     * @param compactValue
-     * @return
-     */
-    public static FingerPrint createFromCompact(byte[] compactValue){
-        return new FingerPrint(uncompact(compactValue));
-    }
-
-    public static boolean validHashValue(byte[] hashValue){
-        if(hashValue.length!=HASH_SIZE)
-            return false;
-        for(byte b:hashValue){
-            if(0!=b&&1!=b)return false;
-        }
-        return true;
-    }
-    public static boolean validHashValue(String hashValue){
-        if(hashValue.length()!=HASH_SIZE)
-            return false;
-        for(int i=0;i<hashValue.length();++i){
-            if('0'!=hashValue.charAt(i)&&'1'!=hashValue.charAt(i))return false;
-        }
-        return true;
-    }
-    public byte[] compact(){
-        return compact(binaryzationMatrix);
-    }
-
-    /**
-     * 指纹数据按位压缩
-     * @param hashValue
-     * @return
-     */
-    private static byte[] compact(byte[] hashValue){
-        byte[] result=new byte[(hashValue.length+7)>>3];
-        byte b=0;
-        for(int i=0;i<hashValue.length;++i){
-            if(0==(i&7)){
-                b=0;
-            }
-            if(1==hashValue[i]){
-                b|=1<<(i&7);
-            }else if(hashValue[i]!=0)
-                throw new IllegalArgumentException("invalid hashValue,every element must be 0 or 1");
-            if(7==(i&7)||i==hashValue.length-1){
-                result[i>>3]=b;
-            }
-        }
-        return result;
-    }
-
-    /**
-     * 压缩格式的指纹解压缩
-     * @param compactValue
-     * @return
-     */
-    private static byte[] uncompact(byte[] compactValue){
-        byte[] result=new byte[compactValue.length<<3];
-        for(int i=0;i<result.length;++i){
-            if((compactValue[i>>3]&(1<<(i&7)))==0)
-                result[i]=0;
-            else
-                result[i]=1;
-        }
-        return result;
-    }
-    /**
-     * 字符串类型的指纹数据转为字节数组
-     * @param hashValue
-     * @return
-     */
-    private static byte[] toBytes(String hashValue){
-        hashValue=hashValue.replaceAll("\\s", "");
-        byte[] result=new byte[hashValue.length()];
-        for(int i=0;i<result.length;++i){
-            char c = hashValue.charAt(i);
-            if('0'==c)
-                result[i]=0;
-            else if('1'==c)
-                result[i]=1;
-            else
-                throw new IllegalArgumentException("invalid hashValue String");
-        }
-        return result;
-    }
-    /**
-     * 缩放图像到指定尺寸
-     * @param src
-     * @param width
-     * @param height
-     * @return
-     */
-    private static BufferedImage resize(Image src,int width,int height){
-        BufferedImage result = new BufferedImage(width, height,
-                BufferedImage.TYPE_3BYTE_BGR);
-        Graphics g = result.getGraphics();
-        try{
-            g.drawImage(src.getScaledInstance(width, height, Image.SCALE_SMOOTH), 0, 0, null);
-        }finally{
-            g.dispose();
-        }
-        return result;
-    }
-    /**
-     * 计算均值
-     * @param src
-     * @return
-     */
-    private static  int mean(byte[] src){
-        long sum=0;
-        // 将数组元素转为无符号整数
-        for(byte b:src)sum+=(long)b&0xff;
-        return (int) (Math.round((float)sum/src.length));
-    }
-    /**
-     * 二值化处理
-     * @param src
-     * @return
-     */
-    private static byte[] binaryzation(byte[]src){
-        byte[] dst = src.clone();
-        int mean=mean(src);
-        for(int i=0;i<dst.length;++i){
-            // 将数组元素转为无符号整数再比较
-            dst[i]=(byte) (((int)dst[i]&0xff)>=mean?1:0);
-        }
-        return dst;
-
-    }
-    /**
-     * 转灰度图像
-     * @param src
-     * @return
-     */
-    private static BufferedImage toGray(BufferedImage src){
-        if(src.getType()==BufferedImage.TYPE_BYTE_GRAY){
-            return src;
-        }else{
-            // 图像转灰
-            BufferedImage grayImage = new BufferedImage(src.getWidth(), src.getHeight(),
-                    BufferedImage.TYPE_BYTE_GRAY);
-            new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(src, grayImage);
-            return grayImage;
-        }
-    }
-
-    @Override
-    public String toString() {
-        return toString(true);
-    }
-    /**
-     * @param multiLine 是否分行
-     * @return
-     */
-    public String toString(boolean multiLine) {
-        StringBuffer buffer=new StringBuffer();
-        int count=0;
-        for(byte b:this.binaryzationMatrix){
-            buffer.append(0==b?'0':'1');
-            if(multiLine&&++count%HASH_SIZE==0)
-                buffer.append('\n');
-        }
-        return buffer.toString();
-    }
-    @Override
-    public boolean equals(Object obj) {
-        if(obj instanceof FingerPrint){
-            return Arrays.equals(this.binaryzationMatrix,((FingerPrint)obj).binaryzationMatrix);
-        }else
-            return super.equals(obj);
-    }
-
-    /**
-     * 与指定的压缩格式指纹比较相似度
-     * @param compactValue
-     * @return
-     * @see #compare(FingerPrint)
-     */
-    public float compareCompact(byte[] compactValue){
-        return compare(createFromCompact(compactValue));
-    }
-    /**
-     * @param hashValue
-     * @return
-     * @see #compare(FingerPrint)
-     */
-    public float compare(String hashValue){
-        return compare(new FingerPrint(hashValue));
-    }
-    /**
-     * 与指定的指纹比较相似度
-     * @param hashValue
-     * @return
-     * @see #compare(FingerPrint)
-     */
-    public float compare(byte[] hashValue){
-        return compare(new FingerPrint(hashValue));
-    }
-    /**
-     * 与指定图像比较相似度
-     * @param image2
-     * @return
-     * @see #compare(FingerPrint)
-     */
-    public float compare(BufferedImage image2){
-        return compare(new FingerPrint(image2));
-    }
-    /**
-     * 比较指纹相似度
-     * @param src
-     * @return
-     * @see #compare(byte[], byte[])
-     */
-    public float compare(FingerPrint src){
-        if(src.binaryzationMatrix.length!=this.binaryzationMatrix.length)
-            throw new IllegalArgumentException("length of hashValue is mismatch");
-        return compare(binaryzationMatrix,src.binaryzationMatrix);
-    }
-    /**
-     * 判断两个数组相似度,数组长度必须一致否则抛出异常
-     * @param f1
-     * @param f2
-     * @return 返回相似度(0.0~1.0)
-     */
-    private static float compare(byte[] f1,byte[] f2){
-        if(f1.length!=f2.length)
-            throw new IllegalArgumentException("mismatch FingerPrint length");
-        int sameCount=0;
-        for(int i=0;i<f1.length;++i){
-            if(f1[i]==f2[i])++sameCount;
-        }
-        return (float)sameCount/f1.length;
-    }
-    public static float compareCompact(byte[] f1,byte[] f2){
-        return compare(uncompact(f1),uncompact(f2));
-    }
-    public static float compare(BufferedImage image1,BufferedImage image2){
-        return new FingerPrint(image1).compare(new FingerPrint(image2));
-    }
-
-}
+//package cc.mrbird.febs.mall.test;
+//
+//import javax.imageio.ImageIO;
+//import java.awt.*;
+//import java.awt.color.ColorSpace;
+//import java.awt.image.BufferedImage;
+//import java.awt.image.ColorConvertOp;
+//import java.io.File;
+//import java.io.IOException;
+//import java.util.Arrays;
+//
+///**
+// * 图片是采用phash算法,一共分为四步吧.
+// *
+// * 1.将图片缩放到16*16大小,这是我们选择的合适的大小,假如宽高不一样,直接将其压到16*16,去掉细节,只保留宏观;
+// *
+// * 2.图片一共是16*16的,共256个像素,我们将图片进行灰度化,灰度化就是只有黑白灰三种,从白到黑,一共分了255层;
+// *
+// * 3.灰度化之后将图片进行DCT转换(离散余弦变化),因为为了识别有的图片旋转,这个DCT转换是将图片进行了一种压缩算法;
+// *
+// * 4.我们对这个算法进行了优化,因为之前是计算像素的均值,我们为了更准确,我们取RGB,rgb一共分为255个像素,我们将255个像素分为16段,如果像素大于0-16记为0,17到32记为1,直到255,这样就得到255位的二进制,这就是这张图片的指纹码.
+// *
+// * 得到唯一标识的指纹码之后怎么去计算像素度呢?
+// *
+// * 通过汉明距离比较两个二进制距离,如果距离小于<10的话,我们就判定两张图片相似.如果两个指纹码(二进制)一模一样,我们就判定两个是一张图片,或者类似;
+// */
+///**
+// * 视频相似度算法:
+// * 视频的话我们是通过ffmpeg(ff am pig),它是一个专门处理视频的框架,可以从视频中按针提取图片.然后就按照图片的相似度取对比了...
+// */
+//
+///**
+// * https://blog.csdn.net/weixin_34095889/article/details/91923072?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171652008316800182787012%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=171652008316800182787012&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-4-91923072-null-null.142^v100^pc_search_result_base8&utm_term=java%20%E6%8A%8A%E5%9B%BE%E7%89%87%E8%BD%AC%E6%8D%A2%E6%88%90%E9%BB%91%E7%99%BD%E7%81%B0%E5%83%8F%E7%B4%A0%E9%A3%8E%E6%A0%BC&spm=1018.2226.3001.4187
+// * 均值哈希实现图像指纹比较
+// */
+//public class FingerPrint {
+//
+//    public static void main(String[] args) {
+//        FingerPrint fp1 = null;
+//        FingerPrint fp2 = null;
+//        try {
+//            fp1 = new FingerPrint(ImageIO.read(new File("D:\\image\\F1.png")));
+//            fp2 = new FingerPrint(ImageIO.read(new File("D:\\image\\Z1.jpg")));
+//        } catch (IOException e) {
+//            e.printStackTrace();
+//        }
+//        System.out.println(fp1.toString(false));
+//        System.out.println(fp2.toString(false));
+//        System.out.printf("sim=%f",fp1.compare(fp2));
+//    }
+//
+//    /**
+//     * 图像指纹的尺寸,将图像resize到指定的尺寸,来计算哈希数组
+//     */
+//    private static final int HASH_SIZE=16;
+//    /**
+//     * 保存图像指纹的二值化矩阵
+//     */
+//    private final byte[] binaryzationMatrix;
+//    public FingerPrint(byte[] hashValue) {
+//        if(hashValue.length!=HASH_SIZE*HASH_SIZE)
+//            throw new IllegalArgumentException(String.format("length of hashValue must be %d",HASH_SIZE*HASH_SIZE ));
+//        this.binaryzationMatrix=hashValue;
+//    }
+//    public FingerPrint(String hashValue) {
+//        this(toBytes(hashValue));
+//    }
+//    public FingerPrint (BufferedImage src){
+//        this(hashValue(src));
+//    }
+//    private static byte[] hashValue(BufferedImage src){
+//        BufferedImage hashImage = resize(src,HASH_SIZE,HASH_SIZE);
+//        byte[] matrixGray = (byte[]) toGray(hashImage).getData().getDataElements(0, 0, HASH_SIZE, HASH_SIZE, null);
+//        return  binaryzation(matrixGray);
+//    }
+//    /**
+//     * 从压缩格式指纹创建{@link FingerPrint}对象
+//     * @param compactValue
+//     * @return
+//     */
+//    public static FingerPrint createFromCompact(byte[] compactValue){
+//        return new FingerPrint(uncompact(compactValue));
+//    }
+//
+//    public static boolean validHashValue(byte[] hashValue){
+//        if(hashValue.length!=HASH_SIZE)
+//            return false;
+//        for(byte b:hashValue){
+//            if(0!=b&&1!=b)return false;
+//        }
+//        return true;
+//    }
+//    public static boolean validHashValue(String hashValue){
+//        if(hashValue.length()!=HASH_SIZE)
+//            return false;
+//        for(int i=0;i<hashValue.length();++i){
+//            if('0'!=hashValue.charAt(i)&&'1'!=hashValue.charAt(i))return false;
+//        }
+//        return true;
+//    }
+//    public byte[] compact(){
+//        return compact(binaryzationMatrix);
+//    }
+//
+//    /**
+//     * 指纹数据按位压缩
+//     * @param hashValue
+//     * @return
+//     */
+//    private static byte[] compact(byte[] hashValue){
+//        byte[] result=new byte[(hashValue.length+7)>>3];
+//        byte b=0;
+//        for(int i=0;i<hashValue.length;++i){
+//            if(0==(i&7)){
+//                b=0;
+//            }
+//            if(1==hashValue[i]){
+//                b|=1<<(i&7);
+//            }else if(hashValue[i]!=0)
+//                throw new IllegalArgumentException("invalid hashValue,every element must be 0 or 1");
+//            if(7==(i&7)||i==hashValue.length-1){
+//                result[i>>3]=b;
+//            }
+//        }
+//        return result;
+//    }
+//
+//    /**
+//     * 压缩格式的指纹解压缩
+//     * @param compactValue
+//     * @return
+//     */
+//    private static byte[] uncompact(byte[] compactValue){
+//        byte[] result=new byte[compactValue.length<<3];
+//        for(int i=0;i<result.length;++i){
+//            if((compactValue[i>>3]&(1<<(i&7)))==0)
+//                result[i]=0;
+//            else
+//                result[i]=1;
+//        }
+//        return result;
+//    }
+//    /**
+//     * 字符串类型的指纹数据转为字节数组
+//     * @param hashValue
+//     * @return
+//     */
+//    private static byte[] toBytes(String hashValue){
+//        hashValue=hashValue.replaceAll("\\s", "");
+//        byte[] result=new byte[hashValue.length()];
+//        for(int i=0;i<result.length;++i){
+//            char c = hashValue.charAt(i);
+//            if('0'==c)
+//                result[i]=0;
+//            else if('1'==c)
+//                result[i]=1;
+//            else
+//                throw new IllegalArgumentException("invalid hashValue String");
+//        }
+//        return result;
+//    }
+//    /**
+//     * 缩放图像到指定尺寸
+//     * @param src
+//     * @param width
+//     * @param height
+//     * @return
+//     */
+//    private static BufferedImage resize(Image src,int width,int height){
+//        BufferedImage result = new BufferedImage(width, height,
+//                BufferedImage.TYPE_3BYTE_BGR);
+//        Graphics g = result.getGraphics();
+//        try{
+//            g.drawImage(src.getScaledInstance(width, height, Image.SCALE_SMOOTH), 0, 0, null);
+//        }finally{
+//            g.dispose();
+//        }
+//        return result;
+//    }
+//    /**
+//     * 计算均值
+//     * @param src
+//     * @return
+//     */
+//    private static  int mean(byte[] src){
+//        long sum=0;
+//        // 将数组元素转为无符号整数
+//        for(byte b:src)sum+=(long)b&0xff;
+//        return (int) (Math.round((float)sum/src.length));
+//    }
+//    /**
+//     * 二值化处理
+//     * @param src
+//     * @return
+//     */
+//    private static byte[] binaryzation(byte[]src){
+//        byte[] dst = src.clone();
+//        int mean=mean(src);
+//        for(int i=0;i<dst.length;++i){
+//            // 将数组元素转为无符号整数再比较
+//            dst[i]=(byte) (((int)dst[i]&0xff)>=mean?1:0);
+//        }
+//        return dst;
+//
+//    }
+//    /**
+//     * 转灰度图像
+//     * @param src
+//     * @return
+//     */
+//    private static BufferedImage toGray(BufferedImage src){
+//        if(src.getType()==BufferedImage.TYPE_BYTE_GRAY){
+//            return src;
+//        }else{
+//            // 图像转灰
+//            BufferedImage grayImage = new BufferedImage(src.getWidth(), src.getHeight(),
+//                    BufferedImage.TYPE_BYTE_GRAY);
+//            new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null).filter(src, grayImage);
+//            return grayImage;
+//        }
+//    }
+//
+//    @Override
+//    public String toString() {
+//        return toString(true);
+//    }
+//    /**
+//     * @param multiLine 是否分行
+//     * @return
+//     */
+//    public String toString(boolean multiLine) {
+//        StringBuffer buffer=new StringBuffer();
+//        int count=0;
+//        for(byte b:this.binaryzationMatrix){
+//            buffer.append(0==b?'0':'1');
+//            if(multiLine&&++count%HASH_SIZE==0)
+//                buffer.append('\n');
+//        }
+//        return buffer.toString();
+//    }
+//    @Override
+//    public boolean equals(Object obj) {
+//        if(obj instanceof FingerPrint){
+//            return Arrays.equals(this.binaryzationMatrix,((FingerPrint)obj).binaryzationMatrix);
+//        }else
+//            return super.equals(obj);
+//    }
+//
+//    /**
+//     * 与指定的压缩格式指纹比较相似度
+//     * @param compactValue
+//     * @return
+//     * @see #compare(FingerPrint)
+//     */
+//    public float compareCompact(byte[] compactValue){
+//        return compare(createFromCompact(compactValue));
+//    }
+//    /**
+//     * @param hashValue
+//     * @return
+//     * @see #compare(FingerPrint)
+//     */
+//    public float compare(String hashValue){
+//        return compare(new FingerPrint(hashValue));
+//    }
+//    /**
+//     * 与指定的指纹比较相似度
+//     * @param hashValue
+//     * @return
+//     * @see #compare(FingerPrint)
+//     */
+//    public float compare(byte[] hashValue){
+//        return compare(new FingerPrint(hashValue));
+//    }
+//    /**
+//     * 与指定图像比较相似度
+//     * @param image2
+//     * @return
+//     * @see #compare(FingerPrint)
+//     */
+//    public float compare(BufferedImage image2){
+//        return compare(new FingerPrint(image2));
+//    }
+//    /**
+//     * 比较指纹相似度
+//     * @param src
+//     * @return
+//     * @see #compare(byte[], byte[])
+//     */
+//    public float compare(FingerPrint src){
+//        if(src.binaryzationMatrix.length!=this.binaryzationMatrix.length)
+//            throw new IllegalArgumentException("length of hashValue is mismatch");
+//        return compare(binaryzationMatrix,src.binaryzationMatrix);
+//    }
+//    /**
+//     * 判断两个数组相似度,数组长度必须一致否则抛出异常
+//     * @param f1
+//     * @param f2
+//     * @return 返回相似度(0.0~1.0)
+//     */
+//    private static float compare(byte[] f1,byte[] f2){
+//        if(f1.length!=f2.length)
+//            throw new IllegalArgumentException("mismatch FingerPrint length");
+//        int sameCount=0;
+//        for(int i=0;i<f1.length;++i){
+//            if(f1[i]==f2[i])++sameCount;
+//        }
+//        return (float)sameCount/f1.length;
+//    }
+//    public static float compareCompact(byte[] f1,byte[] f2){
+//        return compare(uncompact(f1),uncompact(f2));
+//    }
+//    public static float compare(BufferedImage image1,BufferedImage image2){
+//        return new FingerPrint(image1).compare(new FingerPrint(image2));
+//    }
+//
+//}

--
Gitblit v1.9.1